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Abstract

For large time steps, the nonlinear equations of radiation transfer may not be solved adequately by the semi-implicit
linear approximation to yield physical solutions. This deficiency is rectified in three steps: the equations of the semi-implicit
linear method are modified, the modified equations are incorporated into Newton’s method to solve nonlinear equations,
and the transfer equations are solved by the resulting method. The new method also uses the Photon Free Method to
search for the solution in a lower dimensional space than the space of the underlying transfer equations. Two algorithms
are developed from the new method; they solve the modified semi-implicit linear equations by different approaches. The
first is a physics approach; it solves the linear equations approximately by the Grey Transport Approximation. The second
is a mathematical approach; it solves the linear equations exactly by the Sherman–Morrison–Woodbury formula of linear
algebra. However, both algorithms yield the solution to the nonlinear system derived by the Photon Free Method. There-
fore, their solutions are equal to within the specified tolerance of the nonlinear solver. Moreover, both methods can take
advantage of the unconditional stability which comes with the implicit differencing of the time derivative. The time step
which both methods can take is much larger than the time step in which time discretization error is discernible. We shall
relate the mathematical approach to the Photon Free Method. Numerical results for three test problems are presented.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

For large time steps, the semi-implicit linear approximation (SiL) [20] of the radiation transfer equations,
used by conventional deterministic methods [3,20,23,24] to solve the equations of radiation transfer, was
found [11] to yield unphysical solutions. This finding was unexpected for two reasons: the time derivatives
of the SiL equations are differenced implicitly, and the SiL equations merge into the radiation equations as
the time step decreases to zero. Since this abnormal response of the SiL solution to large time steps is absent
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from the solutions [6,21] of the implicitly differenced, multi-group, discrete ordinate, finite difference nonlinear
equations of radiative transfer from which the SiL equations are derived, this development compelled us to re-
assess the SiL approximation in the context of a nonlinear solver. Three questions guided our assessment. Can
the shortcomings of the SiL approximation be corrected? Can the corrected equations be used to solve the
underlying nonlinear equations? Can the solver, built on top of the corrected equations, be linked to the pho-
ton free method (PFM) [11] which optimizes the solution search of Newton’s method by seeking the solution
in a space of much lower dimensionality than the space of the radiation equations?

The short answer to these questions is the affirmative for all three. Two nonlinear solvers are developed
from the modified SiL equations. Both are, however, unconventional applications of Newton’s method; the
linear system which determines the next iterate in Newton’s method is not the Jacobian of the nonlinear sys-
tem. The difference between the two algorithms is that the linear system is approximated in the first algorithm
but is not approximated in the second algorithm. Both methods can be considered to be quasi-Newton meth-
ods [18]. These answers are discussed in more detail below.

The assumptions of the SiL method which restrict the time step that it can take accurately are: the coeffi-
cients of the equations of radiative transfer can be frozen to their values at the beginning of a time step, and
the black body emission function can be linearized about the temperature at the beginning of the time step.
Both assumptions can be eliminated from the SiL approximation by minor modifications of its equations.
Freezing and linearizing can be considered to be the two lowest order approximations of a nonlinear function
by a Taylor series; freezing is the zeroth order and linearizing is the first-order. In our modification of the SiL
method, we approximate the nonlinear equations not at the temperature which is at the beginning of a time
step as in the SiL method, but at the current temperature which is needed by Newton’s iteration. Furthermore,
our method linearizes not only the Planckian, but also the coefficients of the nonlinear equations. The goal of
our modification is to formulate an equation not for the solution but for the change in the solution which is
needed to update the solution in Newton’s method.

If the radiation equations are solved by Newton’s method, then the incorporation of the modified SiL equa-
tions as the linear step in Newton’s method is straightforward. However the result is not the most efficient
method for solving the radiation equations, since the solution to the radiation equations can be obtained from
the much smaller but equivalent system of equations derived by the PFM method. In order to take advantage
of this reduced system, the modified SiL equations are incorporated into the PFM, as we shall see, in an
unconventional way. The result is a hybrid method in which the Jacobian of the PFM is replaced by a trans-
port equation which can be preconditioned by Grey Transport Acceleration [20] and by Diffusion Synthetic
Acceleration [2,4,8,9,19,22].

However, when the radiation equations are linearized to the accuracy required by Newton’s method,
anisotropy is introduced into the pseudo scattering operator of the SiL transport equation. This is an unfor-
tunate development, because the modified equation can not be solved exactly by the GTA method [20] which
is designed to solve a transport equation with isotropic scattering. In this paper, we shall solve this equation by
two different methods. The first method (to be denoted as the INL method), which assumes weak anisotropic
scattering, can be described as follows: we set the anisotropic term to zero, then solve the resulting isotropic
equation by GTA + DSA preconditioning, and then equate the solution to the isotropic equation to the solu-
tion to the anisotropic equation. The second method (to be denoted as the SMW method) solves the transport
equation with anisotropic scattering by the Sherman–Morrison–Woodbury (SMW) formula of linear algebra
[15]. The algorithm built around the SMW formula, as we shall see, is a generalization of the transport tech-
nique to solve a mono-energetic transport equation with isotropic scattering by deriving a ‘discrete integral
equation’ for the ’scalar flux’ from the transport equation for the angular flux.

Both nonlinear solvers (INL and SWM) are explained in terms of pseudo-code. The SiNL method, to which
the INL method simplifies when the coefficients of the nonlinear system are temperature independent, is devel-
oped in order to show the error, caused by the freezing of the coefficients of the radiation equations, in iso-
lation from other errors by producing a solution which differs from the ‘exact’ solution by only the effect
created by the freezing process. The INL, SMW, and SiNL methods are tested on three problems; the results
of these tests are presented in Section 6. The nonlinear equations which are solved by these nonlinear methods
are described in Section 2. In order to relate these solvers to the solver of the PFM, the PFM is reviewed in
Section 3. The incorporation of the SiL approximation into Newton’s method is presented in Section 4; it is in
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this section where the Jacobian equation of the PFM method is replaced by a transport equation with aniso-
tropic scattering. The isotropicization of this transport equation by the INL method is described in Section
5.1. On the other hand, in Section 5.2, we shall show that the transport equation with anisotropic scattering
can be solved exactly by the SMW formula. The numerical results of 3 test problems are presented in Section
6. We summarize the developments of this paper in Section 7. The relationship between the SMW solver and
the PFM solver is drawn in Section 7.1. The SiL method is assessed in the context of the INL and SMW meth-
ods in Section 7.2.

2. The multi-group and the discrete-ordinate approximation for radiative transfer

For clarity of exposition, we restrict our discussion to slab geometry and local thermodynamic equilibrium.
In the absence of scattering, material motion, and heat conduction, the multi-group, discrete-ordinate equa-
tions of radiative transfer, Section VII.C of [2], consist of the transport equation:
1 No
2 A h

time st
1

c

owg;d

ot
þ ld

owg;d

ox
þ rgðT Þwg;d ¼ rgðT ÞBgðT Þ þ sg;d

g ¼ 1; . . . ; nĝ

d ¼ 1; . . . ; nd̂

ð2:1Þ
for the intensity wg,d, and the material equation
CpðT Þ
oT
ot
¼
Xnĝ

g¼1

Xnd̂

d¼1

rgðT Þwdðwg;d � BgðT ÞÞ þ q ð2:2Þ
for the temperature T, where
BgðT Þ ¼
Z m

gþ1
2

m
g�1

2

4phm3

c2

e�hm=kT

1� e�hm=kT
dm
is the group integrated1 Planck function,
CpðT Þ ¼ qðT ÞCvðT Þ;

is the product of the mass density q(T) and the heat capacity Cv(T), and {wd} is the set of quadrature weights
which sums to 2. In these equations, c is the speed of light, h is Planck’s constant, k is Boltzmann’s constant, g

is the group index, d is the direction index, rg(T) is the group averaged cross section, sg,d is a frequency and
direction dependent external radiation source, and q is an external heat source.

If the system is discretized by the backward Euler Method2, and if the superscript n represents the begin-
ning of a time step and the absence of a superscript represents the end of a time step, we have
ld

owg;d

ox
þ rgðT Þ þ

1

cDtn

� �
wg;d ¼ rgðT ÞBgðT Þ þ sg;d þ

wn
g;d

cDtn
;

CpðT Þ
T � T n

Dtn
¼
Xnĝ

g¼1

Xnd̂

d¼1

rgðT Þwdðwg;d � BgðT ÞÞ þ q:
The streaming operator can be discretized by many finite element or finite difference techniques, e.g. the Pet-
rov–Galerkin method [16], the Diamond Difference method [10], the Discontinuous Galerkin method [25], the
Corner Balance method [1], the Linear Discontinuous method [19], the Weighted Diamond Difference method
[7], etc. As a result of the discretization, the spatial derivative can be expressed as a matrix, which we denote as
D, and the boundary conditions can be expressed as a source term, which we denote as bg,d. Each discretiza-
tion, however, lays out w on a mesh in its own way. For some discretizations, w is node centered, for others, w
is zone centered and face centered, and for a few, w is both. For the sake of clarity, let the discretization of the
spatial derivative be zone centered. Although such a discretization is highly inaccurate and is highly unlikely to
rmalization of BmðT Þ :
R1

0 dm
R 1
�1 dl 4phm3

c2
e�hm=kT

1�e�hm=kT ¼ 8p5k4T 4

15h3c2 .
igher order backward difference formula may be able to take advantage of ability of the PFM and of the new method to take large
eps stably.
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be used in a simulation, this choice simplifies our presentation. Assuming that wg,d, T, the external sources,
and the boundary condition bg,d are zone centered arrays, that D is a matrix which operates on zone centered
arrays, and that rg(T) and Cp(T) are diagonal matrices whose entries are nonlinear functions of T, the discrete
system of nonlinear equations can be written as
ðldDþ rgðT Þ þ ðcDtnÞ�1IÞwg;d ¼ rgðT ÞBgðT Þ þ sg;d þ ðcDtnÞ�1wn
g;d þ bg;d ;

CpðT Þ
T � T n

Dtn
¼
Xnĝ

g¼1

Xnd̂

d¼1

rgðT Þwdðwg;d � BgðT ÞÞ þ q:
The first equation of the system above can be written more concisely by defining the matrix on the left-hand
side (lhs) as
Hg;dðT Þ � ldDþ rgðT Þ þ ðcDtnÞ�1I ; ð2:3Þ

and the last three terms on the right-hand side (rhs) as f n

g;d � sg;d þ ðcDtnÞ�1wn
g;d þ bg;d to yield
H g;dðT Þwg;d ¼ rgðT ÞBgðT Þ þ f n
g;d ;

CpðT Þ T�T n

Dtn
¼
Pnĝ

g¼1

Pnd̂

d¼1

rgðT Þwdðwg;d � BgðT ÞÞ þ q:

8><>: ð2:4Þ
To prove the convergence of an algorithm, it is convenient to denote the ‘true’ solution of (2.4) by w�g;d and T*;
these variables satisfy
H g;dðT �Þw�g;d ¼ rgðT �ÞBgðT �Þ þ f n
g;d ;

CpðT �Þ T ��T n

Dtn
¼
Pnĝ

g¼1

Pnd̂

d¼1

rgðT �Þwdðw�g;d � BgðT �ÞÞ þ q:

8><>: ð2:5Þ
3. A summary of the photon free method

The PFM solves the first equation of (2.4) for wg,d, since the matrix Hg,d(T), which is without scattering, is
easy to invert, and then substitute the solution wg;d ¼ H�1

g;dðrgðT ÞBgðT Þ þ f n
g;dÞ into the second equation of (2.4)

to obtain the nonlinear equation,
CpðT Þ
T � T n

Dtn
¼
Xnĝ ;nd̂

g;d¼1

rgðT ÞwdðH�1
g;dðrgðT ÞBgðT Þ þ f n

g;dÞ � BgðT ÞÞ þ q; ð3:1Þ
which is then solved by Newton’s method. The matrix, H�1
g;d , in (3.1) is known as the sweeping operator in

transport theory; its action on the vector rg(T)Bg(T) is operationally equivalent to a matrix–vector
product.

If we can find the T that solves (3.1), then we also have the solution to the underlying system (2.4). The
reason is as follows; if we substitute the T that solves (3.1) into the first equation of (2.4), then we can complete
the solution of (2.4) by back-solving the first equation of (2.4) for the intensity wg,d. Let us introduce notation
for solving (3.1). If we define, F ðT Þ, as the nonlinear residual of (3.1),
FðT Þ � qþ
Xnĝ ;nd̂

g;d¼1

rgðT ÞwdðH�1
g;dðrgðT ÞBgðT Þ þ f n

g;dÞ � BgðT ÞÞ � CpðT Þ
T � T n

Dtn
; ð3:2Þ
then (3.1) can be written as
FðT Þ ¼ 0: ð3:3Þ

Nonlinear solvers for (3.3) require the evaluation of FðT Þ, which is facilitated by the first equation of (2.4).
For the iterate, Tk, it is straightforward to evaluate the terms: Cp(Tk), rg(Tk), and Bg(Tk). However, the eval-
uation of H�1

g;dðrðT kÞBgðT kÞ þ f n
g;dÞ is more involved; it is determined by solving the first equation of (2.4)

H g;dðT kÞwg;d ¼ rgðT kÞBgðT kÞ þ f n
g;d .
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Let Tk be the current iterate. The goal of an iterative solver is to reduce the nonlinear residual FðT Þ with
each iteration. Newton’s method for solving (3.3) starts with an initial guess, T0, and finds the new iterate by
solving the linear system
JdT ¼ �FðT kÞ;

where
J � oFðT Þ
oT

����
T k
is the Jacobian matrix formed by the partial derivatives of F evaluated at Tk (J is given in detail in Appendix).
The new iterate is then determined by
T kþ1 ¼ T k þ dT :
However, kFðT kþ1Þk may be larger than kFðT kÞk; the Newton step dT fails to satisfy the goal of the iterative
solver. In order to achieve this goal, the step is reduced by a factor of k, which is less than 1, in the following
way:
T kþ1 ¼ T k þ kdT :
If this new iterate fails to reduce the ‘nonlinear residual’ F , then k is reduced further. This process continues
until either an iterate, which decreases the nonlinear residual, is found, or k is reduced to roundoff which trig-
gers the process to terminate with the declaration that ‘Newton’s method failed, because F ðT kÞ, which in not
0, is not reduced by dT ’.

Let us introduce into (2.4) notation for the temperature dependent functions, matrices, temperature deriv-
atives of these functions, and temperature derivatives of these matrices at the temperature at which they are
evaluated; the superscript k represent their values at the temperature Tk, e.g.
Ck
p � CpðT kÞ; _Ck

p �
oCp

oT

����
T k

;

rk
g � rgðT kÞ; _rk

g �
org

oT

����
T k

;

Bk
g � BgðT kÞ; _Bk

g �
oBg

oT

����
T k

;

Hk
g;d � Hg;dðT kÞ; _H k

g;d � _rk
g:
The PFM algorithm, derived in [11], for solving (2.4) is

Algorithm 1 (The photon free method)

T0 = Tn

for k = 0,1, . . .
1. Hk

g;dwg;d ¼ rk
gBk

g þ f n
g;d

2. FðT kÞ ¼ q� Ck
p

T k�T n

Dtn
þ
Pnĝ

g¼1

Pnd̂
d¼1r

k
gwdðwg;d � Bk

gÞ
3. if kF ðT kÞk > tol
4. JdT ¼ �FðT kÞ
5. k = 1
6. Tk = Tk + kdT

7. if kF ðT kÞk > kFðT kÞk
8. k = k/2, go to 6
9. else

10. Tk+1 = Tk

11. end if
12. else
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13. break (solution found)
14. end if

end for.

The procedure, which is between line 6 and line 11 in the above pseudo code, is the simplest example3 of a
line search algorithm; our code uses the Armijo line search algorithm [5].

Remark 1. If J is nonsingular, then Algorithm 1 converges to the solution of (2.4) when FðT kÞ ¼ 0.

Proof. Since J is nonsingular, Algorithm 1 can proceed. If F ðT kÞ ¼ 0, then by line 2 of Algorithm 1,
we have
3 Th
residua
Tk, Hg
Ck
p

T k � T n

Dtn
¼
Xnĝ

g¼1

Xnd̂

d¼1

rk
gwdðwg;d � Bk

gÞ þ q; ð3:4Þ
where wg,d is determined by line 1 of Algorithm 1.
Hk
g;dwg;d ¼ rk

gBk
g þ f n

g;d : ð3:5Þ
Comparing the pair, (3.4) and (3.5), to the pair in (2.5), we have wg;d ¼ w�g;d and Tk = T*. h

Since the cost of Newton’s method for solving a nonlinear system increases with the size of the system, the
PFM method achieves efficiency by solving an equivalent but much smaller system than the underlying system
of radiation equations.
4. Derivation of the modified SiL approximation

The goal of this section is to solve the PFM system of Eq. (3.3) by a modified SiL algorithm. Our modi-
fication of the SiL algorithm is developed in two stages. An algorithm for solving the radiative transfer equa-
tions with lagged coefficients is introduced in the first stage in order to underscore the terms which are inserted
into the SiL equations by our modification even when the heat capacity and the cross section are temperature
independent. To lag a coefficient is to treat the coefficient as if it were temperature independent within a time
step, and to fix the value of the coefficient to its value at the beginning of the time step. Then, in the second
stage, the temperature effects of a temperature dependent heat capacity and a temperature dependent cross
section are incorporated into the modified algorithm.

The modified equations are derived by approximating the system of nonlinear functions (2.4) by a first-
order Taylor series. To facilitate the approximating process, we introduce the [Æ] notation to denote the oper-
ator which converts a vector of length nx̂ into a diagonal matrix of order nx̂ by inserting the entries of the vec-
tor into the diagonal entries of the matrix,
½x� 2 Rnx̂�nx̂ � diagðxÞ for x 2 Rnx̂�1:
We also need the formula, [x]y = [y]x, to manipulate these diagonal matrices.

Remark 2. If x and y are vectors of length nx̂, then [x]y = [y]x.

Proof. For each i, 1 6 i 6 nx̂, component i of the vector [x]y is
ð½x�yÞi ¼ xiyi ¼ yixi ¼ ð½y�xÞi �
e factor of 2 in line 8 is arbitrary. A more efficient algorithm selects a reduction factor that depends on the rejected nonlinear
ls. We remind the reader that the calculation of FðT kÞ on line 7 requires the solution of the transport equation at the current iterate

;dðT kÞwg;d ¼ rgðT kÞBgðT kÞ þ f n
g;d .
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4.1. Modifications with lagged coefficients

In this paper, a matrix, which is either temperature independent or lagged, is superscript-less. In this sub-
section, let Hg,d, rg, and Cp denote the lagged approximations of Hg,d(T), rg(T), and Cp(T), respectively.

The derivation of the SiL approximation of (2.4) begins by lagging Hg,d(T), rg(T), and Cp(T) to yield
4 Fo
to Ax
Hg;dw
lag
g;d ¼ rgBgðT Þ þ f n

g;d ;

Cp
T�T n

Dtn
¼
Pnĝ

g¼1

Pnd̂

d¼1

rgwdðwlag
g;d � BgðT ÞÞ þ q:

8><>: ð4:1Þ
The SiL approximation then expands Bg(T) about the temperature at the beginning of the time step Tn. How-
ever, in our modification of the SiL equations, we expand both Bg(T) and (T � Tn) linearly about the current

iterate Tk:
BgðT Þ � Bk
g þ ½ _Bk

g�ðT � T kÞ; and T � T n ¼ ðT k � T nÞ þ ðT � T kÞ:
Substituting these expansions into (4.1) yields our modification of the SiL approximation
Hg;dw
SiL
g;d ¼ rgðBk

g þ ½ _Bk
g�ðT � T kÞÞ þ f n

g;d ;

Cp

Dtn
ðT � T kÞ ¼

Xnĝ

g¼1

Xnd̂

d¼1

rgwdðwSiL
g;d � Bk

g � ½ _Bk
g�ðT � T kÞÞ þ q� Cp

Dtn
ðT k � T nÞ:

ð4:2Þ
Larsen’s SiL approximation [20] can be obtained from (4.2) by dropping the last term, Cp Æ (Tk � Tn)/Dtn, on
the rhs of the second equation of (4.2), and by evaluating both the Planckian and the Planckian’s temperature
derivative at Tn. The linear system (4.2) can be solved by Larsen’s method [20]; the second equation of (4.2) is
solved for T � Tk and the result is substituted into the first equation of (4.2) to yield
H g;dw
SiL
g;d ¼ âk

g

Xnĝ

g0¼1

Xnd̂

d 0¼1

rg0wd 0 ðwSiL
g0 ;d 0 � Bk

g0 Þ þ q� Cp
T k � T n

Dtn

 !
þ rgBk

g þ f n
g;d ; ð4:3Þ
where4
âk
g �

rg½ _Bk
g�

Cp

Dtn
þ
Pnĝ ;nd̂

g¼1;d¼1rgwd ½ _Bk
g�
: ð4:4Þ
The operator âk
gCpðT k � T nÞ=Dtn, which is the last term within the parenthesis on the rhs of (4.3), is absent in

Larsen’s equation (2.23) of [20]. After (4.3) is solved for wSiL
g;d , Larsen completes the solution to (4.2) by substi-

tuting wSiL
g;d into the second equation of (4.2) to obtain T. Thus, Larsen’s method can be interpreted as an algo-

rithm to determine T.
In fact, we shall use Larsen’s method to determine a new temperature iterate in Newton’s method to solve

(4.1). In order to do so, we need notation. Let Tk denote the temperature, and wk;lag
g;d denote the intensity at the

kth stage of Newton’s iteration. The procedure to determine the new iterate Tk+1 by Larsen’s method is
derived in three steps. The first step is to define wSiL

g;d as
wSiL
g;d � wk;lag

g;d þ dwk
g;d ; ð4:5Þ
where wk;lag
g;d is determined by the first equation of (4.1) with the temperature in that equation set to Tk
H g;dw
k;lag
g;d � rgBk

g þ f n
g;d : ð4:6Þ
The second step is to derive an equation to determine dwk
g;d . This equation can be obtained by substituting

(4.5) into (4.3). Using (4.6) to simplify the result of the substitution yields
r a nonsingular diagonal A, such as the matrix in the ‘denominator’ of (4.4), we denote the inverse of A as I
A, and denote the solution

= b as b
A to emphasize the diagonality of A.
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Hg;ddwk
g;d � âk

g

Xnĝ

g0¼1

Xnd̂

d 0¼1

rg0wd 0dwk
g0 ;d 0 ¼ âk

gF lagðT kÞ; ð4:7Þ
where
F lagðT kÞ ¼ qþ
Xnĝ

g¼1

Xnd̂

d¼1

rgwdðwk;lag
g;d � Bk

gÞ � Cp
T k � T n

Dtn
ð4:8Þ
is the PFM nonlinear residual for the pair in (4.1) at temperature Tk. The third step is to substitute (4.5) into
the second equation of (4.2) and then use (4.8) to collect terms to yield
T ¼ T k þ
F lagðT kÞ þ

Pnĝ

g¼1

Pnd̂
d¼1rgwddwk

g;d

Cp=Dtn þ
Pnĝ

g¼1

Pnd̂
d¼1rgwd ½ _Bk

g�
: ð4:9Þ
The collection of Eqs. (4.6), (4.8), (4.7), and (4.9), can be crafted into an algorithm to solve (4.1).

Algorithm 2 (Semi-implicit nonlinear method for lagged coefficients)

T0 = Tn

for k = 0,1, . . .
1. H g;dw

k;lag
g;d ¼ rgBk

g þ f n
g;d

2. F lagðT kÞ ¼ q� Cp
T k�T n

Dtn
þ
Pnĝ

g¼1

Pnd̂
d¼1rgwdðwk;lag

g;d � Bk
gÞ

3. if kF lagðT kÞk > tol
4. Hg;ddwk

g;d � âk
g

Pnĝ

g0¼1

Pnd̂
d 0¼1

rg0wd 0dwk
g0 ;d 0 ¼ âk

gF lagðT kÞ
5. k = 1
6. T k ¼ T k þ k

F lagðT kÞþ
Pnĝ

g¼1

Pn
d̂

d¼1
rgwddwk

g;d

Cp=Dtnþ
Pnĝ

g¼1

Pn
d̂

d¼1
rgwd ½ _Bk

g �

7. if kF lagðT kÞk > kF lagðT kÞk
8. k = k/2, go to 6
9. else

10. Tk+1 = Tk

11. end if
12. else
13. break, (solution found)
14. end if

end for.

Remark 3. Assume that line searching is ‘turned off’ in Algorithm 2, the zeroth iterate of Algorithm 2 is the
SiL solution of [20].
Proof. If, in Algorithm 2, we fix k to 1 and we set k = 0, then the lines 1, 2, 4, 6, and 10 for this iterate are:
Hg;dw
k;lag
g;d ¼ rgBk

g þ f n
g;d ; ð4:10Þ

F lagðT kÞ ¼ q� Cp
T k � T n

Dtn
þ
Xnĝ

g¼1

Xnd̂

d¼1
rgwdðwk;lag

g;d � Bk
gÞ; ð4:11Þ

Hg;ddwk
g;d � âk

g

Xnĝ

g0¼1

Xnd̂

d 0¼1
rg0wd 0dwk

g0;d 0 ¼ âk
gF lagðT kÞ; ð4:12Þ
and
T kþ1 ¼ T k þ
F lagðT kÞ þ

Pnĝ

g¼1

Pnd̂
d¼1rgwddwk

g;d

Cp=Dtn þ
Pnĝ

g¼1

Pnd̂
d¼1rgwd ½ _Bk

g�
: ð4:13Þ
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If we substitute (4.11) into (4.12) and (4.13), add (4.10) and (4.12), and apply (4.5) to the result, we have
Hg;dw
SiL
g;d ¼ âk

g

Xnĝ

g0¼1

Xnd̂

d 0¼1

rg0wd 0 ðwSiL
g0;d 0 � Bk

g0 Þ þ q� Cp
T k � T n

Dtn

 !
þ rgBk

g þ f n
g;d ;

T kþ1 ¼ T k þ
Pnĝ

g¼1

Pnd̂
d¼1rgwdðwSiL

g;d � Bk
gÞ

� �
þ q� Cp

T k�T n

Dtn

Cp=Dtn þ
Pnĝ

g¼1

Pnd̂
d¼1rgwd ½ _Bk

g�
:

For k = 0, T0 = Tn. Comparing the above pair of equations to Eq. (4.3) and the second equation of (4.2), we
have the SiL equation given by (2.23) of [20]. h
Remark 4. If the matrix on the lhs of line 4 of Algorithm 2 is nonsingular, then Algorithm 2 converges to the
solution of (4.1) when F lagðT kÞ ¼ 0.
Proof. Since matrix on the lhs of line 4 of Algorithm 2 is nonsingular, then Algorithm 2 can proceed. When
F lagðT kÞ ¼ 0, we have the solution to (4.1) for the reasons given in Remark 1. h

In this section in which the heat capacity and the cross section are temperature independent, the SiL equa-
tions are modified in a way in which the equations on lines 4 and 6 of the PFM method of Algorithm 1 can be
exchanged for the equations on lines 4 and 6 of Algorithm 2. The equations on lines 4 and 6 of both algorithms
generate the trial temperature Tk which goes into line search. If the coefficients of these equations are temper-
ature independent, then Algorithm 2 yields the solution to the PFM system of nonlinear equations (3.3).

4.2. Implicit nonlinear transport method with unfrozen coefficients

In order to incorporate a temperature dependent heat capacity and a temperature dependent cross section
into the framework of Algorithm 2 of Section 4.1, the temperature dependent terms of (2.4), Cp(T)(T � Tn),
rg(T)Bg(T), and rg(T)wg,d, are linearized about the current temperature Tk.

It is straightforward to expand Cp(T)(T � Tn) and rg(T)Bg(T). The expansion of Cp(T)(T � Tn) about Tk is
CpðT ÞðT � T nÞ � Ck
pðT k � T nÞ þ ðCk

p þ _Ck
p½T k � T n�ÞðT � T kÞ; ð4:14Þ
and the expansion of rg(T)Bg(T) about Tk is
rgðT ÞBgðT Þ � rk
gBk

g þ rk
g½ _Bk

g� þ _rk
g½Bk

g�
� �

ðT � T kÞ: ð4:15Þ
However, the expansion of rg(T)wg,d about Tk is complicated. Although the expansion of rg(T) is
straightforward
rgðT Þ � rk
g þ _rk

g½T � T k�; ð4:16Þ
the expansion of wg,d, which does not depend explicitly on T, about Tk requires a reference intensity at Tk by
which to expand wg,d. Let wk

g;d be that reference intensity which is determined by the first equation of (2.4) with
the temperature in that equation set to Tk
H k
g;dw

k
g;d ¼ rk

gBk
g þ f n

g;d : ð4:17Þ
This equation is a generalization of (4.6); the coefficients of (4.17) are evaluated at Tk whereas the coefficients
of (4.6) are independent of temperature. Since wg,d is the intensity which is determined by the first equation of
(2.4) with the temperature in that equation set to T, then we define dwk

g;d to be the change in the intensity when
the temperature in the first equation of (2.4) is changed from Tk to T. These three intensities are related by
wg;d � wk
g;d þ dwk

g;d : ð4:18Þ
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Therefore, the expansion of rg(T)wg,d about Tk can be determined from the product of (4.16) and (4.18)
5 An
rgðT Þwg;d � ðrk
g þ _rk

g½T � T k�Þðwk
g;d þ dwk

g;dÞ � rk
gðw

k
g;d þ dwk

g;dÞ þ _rk
g½T � T k�wk

g;d

¼ rk
gðw

k
g;d þ dwk

g;dÞ þ _rk
g½w

k
g;d �ðT � T kÞ; ð4:19Þ
where the second-order term ½T � T k�dwk
g;d is dropped and ½wk

g;d �ðT � T kÞ is obtained from ½T � T k�wk
g;d by the

formula of Remark 2.
Since Hg,d(T), defined in (2.3), is the sum of rg(T) and the temperature independent matrix D, then

_H k
g;d ¼ _rk

g. Therefore the first-order expansion of Hg,d(T)wg,d is
Hg;dðT Þwg;d � Hk
g;dðw

k
g;d þ dwk

g;dÞ þ _rk
g½w

k
g;d �ðT � T kÞ: ð4:20Þ
The substitution of (4.15) and (4.20) into the first equation of (2.4) and the application of (4.17) to simplify the
result yield
Hk
g;ddwk

g;d þ _rk
g½w

k
g;d �ðT � T kÞ ¼ ðrk

g½ _Bk
g� þ _rk

g½Bk
g�ÞðT � T kÞ: ð4:21Þ
Substituting (4.14), (4.15) and (4.19) into the second equation of (2.4), collecting terms with (3.2), and rear-
ranging the result slightly, we have
Ck
p þ _Ck

p½T k � T n�
Dtn

þ
Xnĝ

g¼1

Xnd̂

d¼1

wdðrk
g½ _Bk

g� þ _rk
g½Bk

g� � _rk
g½w

k
g;d �Þ

 !
ðT � T kÞ

¼ FðT Þ þ
Xnĝ

g¼1

Xnd̂

d¼1

rk
gwddwk

g;d : ð4:22Þ
If the diagonal matrix on the lhs of (4.22) is nonsingular,
Ck
p þ _Ck

p½T k � T n�
Dtn

þ
Xnĝ

g¼1

Xnd̂

d¼1

wdðrk
g½ _Bk

g� þ _rk
g½Bk

g� � _rk
g½w

k
g;d �Þ

 !
i;i

6¼ 0; 1 6 i 6 nx̂; ð4:23Þ
we can solve (4.22) for (T � Tk) and substitute the result into (4.21) to give the transport equation which is
driven by pseudo anisotropic5 scattering and by a pseudo external anisotropic source
Hk
g;ddwk

g;d � ak
g;d

Xnĝ

g0¼1

Xnd̂

d 0¼1

rk
gwd 0dwk

g0;d 0 ¼ ak
g;dFðT kÞ; ð4:24Þ
where
ak
g;d �

rk
g½ _Bk

g� þ _rk
g½Bk

g� � _rk
g½w

k
g;d �

Ck
pþ _Ck

p ½T k�T n�
Dtn

þ
Pnĝ

g¼1

Pnd̂
d¼1wdðrk

g½ _Bk
g� þ _rk

g½Bk
g� � _rk

g½w
k
g;d �Þ

: ð4:25Þ
Remark 5. The pair (4.21) and (4.22) is a special linear system in which the elimination of either (T � Tk) or
dwk

g;d is easy. The elimination of (T � Tk) from the pair, which requires the assumption (4.23), yields (4.24). On
the other hand, the elimination of dwk

g;d from the pair, which requires the sweeping operator H k;�1
g;d to exist,

yields
Ck
p þ _Ck

p½T k � T n�
Dtn

þ
Xnĝ

g¼1

Xnd̂

d¼1

wdðI � rk
gHk;�1

g;d Þðrk
g½ _Bk

g� þ _rk
g½Bk

g� � _rk
g½w

k
g;d �Þ

 !
ðT � T kÞ ¼ F ðT kÞ; ð4:26Þ
which is the equation on line 4 of Algorithm 1 by which the PFM method updates the temperature. The proof
of this statement is : the matrix on the lhs of (4.26) is the negative of the J given by (8.3). Since the elimination
anisotropic operator or an anisotropic source means that the operator or the source depends on the direction index d.
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of either (T � Tk) or dwk
g;d from the pair (4.21) and (4.22) improves the efficiency for solving them without

altering the solution, then the solutions to the pair obtained by Algorithms 1 and 3 are equal.

The collection of Eqs. (3.2), (4.17), (4.22), (4.24) and (4.25), can be crafted into an algorithm to solve (2.4)
with unlagged coefficients.

Algorithm 3 (The modified SiL algorithm with unfrozen coefficients).

T0 = Tn

for k = 0, 1, . . .
1. Hk

g;dw
k
g;d ¼ rk

gBk
g þ f n

g;d

2. FðT kÞ ¼ q� Ck
p

T k�T n

Dtn
þ
Pnĝ

g¼1

Pnd̂
d¼1r

k
gwdðwk

g;d � Bk
gÞ

3. if kF ðT kÞk > tol
4. H k

g;ddwk
g;d � ak

g;d

Pnĝ

g0¼1

Pnd̂
d 0¼1

rk
g0wd 0dwk

g0;d 0 ¼ ak
g;dF ðT kÞ

5. k = 1
6. T k ¼ T k þ k

FðT kÞþ
Pnĝ

g¼1

Pn
d̂

d¼1
rgwd dwk

g;d

Ck
pþ _Ck

p ½T k�T n �
Dtn

þ
Pnĝ

g¼1

Pn
d̂

d¼1
wd ðrk

g ½ _Bk
g �þ _rk

g ½Bk
g �� _rk

g ½wk
g;d �Þ

7. if kF ðT kÞk > kFðT kÞk
8. k = k/2, go to 6
9. else

10. Tk+1 = Tk

11. end if
12. else
13. break, (solution found)
14. end if

end for.

Remark 6. If, in Algorithm 3, the equation on line 4 is solvable, and the ‘denominator’ on the rhs of line 6 is
nonsingular, then Algorithm 3 converges to the solution of (2.4) when FðT kÞ ¼ 0.
Proof. These two assumption enable Algorithm 3 to proceed. When FðT kÞ ¼ 0, we have the solution to (2.4)
for the reasons given in Remark 1. h

Algorithm 3 generalizes Algorithm 2 by incorporating the temperature derivatives of Cp(T) and rg(T) into
the coupling strength ak

g;d and into the denominator on the rhs of line 6. However, these terms may cause Algo-
rithm 3 to fail by preventing (4.23) to be met.
5. Methods to solve the transport equation of Algorithm 3

The transport equation on the fourth line of Algorithm 3 is a generalization of the transport equation of the
SiL approximation which the GTA method is designed to solve. However, the GTA method requires two con-
ditions which may not be met when the coefficients of this equation are temperature dependent. The first con-
dition requires the scattering term to be isotropic; the coupling strength ak

g;d on the lhs of the equation must be
independent of the direction index d which occurs when _rk

g ¼ 0 (see (4.25)). The second condition requires ak
g;d

to be positive in order for it to be interpreted as a scattering probability; this condition is met when both _Ck
p

and _rk
g are zero.

We shall solve this transport equation with anisotropic scattering by two methods. The first method
consists of two steps. In the first step, the coefficient ak

g;d on the lhs of the equation is ‘isotropicized’
by setting the _rk

g term in ak
g;d to zero. In the second step, the solution of ‘isotropicized’ transport equation

is equated to the solution of anisotropic transport equation. The second method solves the transport equa-
tion with anisotropic scattering by the Sherman–Morrison–Woodbury (SMW) formula of linear algebra
[15].
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5.1. Isotropicization of the transport equation

Let
6 Th
Hk

g;ddw
equatio
the SM
Eq. (5
fð.ðT ÞÞ � T
.ðT Þ

o.ðT Þ
oT

���� ���� ð5:1Þ
denote the ‘sensitivity coefficient’ of .(T). The coefficient .(T) is said to be temperature sensitive if f(.(T)) > 1,
and temperature insensitive if f(.(T)) < 1. The INL approximation assumes that fðrk

gÞ < 1; thus setting _rk
g to

zero in (4.25) yields
ak
g;d ! ~ak

g �
rk

g½ _Bk
g�

Ck
pþ _Ck

p ½T k�T n�
Dtn

þ
Pnĝ

g¼1

Pnd̂
d¼1wdrk

g½ _Bk
g�
: ð5:2Þ
Substituting (5.2) into the lhs of the transport equation on line 4 of Algorithm 3 makes the transport equation
isotropic and amenable to the GTA method. Although ~ak

g of (5.2) and âk
g of (4.4) are similar in form, they are

different in content. The coefficient ~ak
g of (5.2) is determined by the heat capacity and the cross sections which

are evaluated at the current temperature Tk. On the other hand, âk
g of (4.4) is determined by the heat capacity

and the cross sections which are evaluated at Tn the temperature at the beginning of the time step.

5.2. Solving the transport equation of Algorithm 3 by the Sherman–Morrison–Woodbury formula

Since the GTA method, which is designed to solve a transport equation with isotropic scattering, is unable
to ‘exactly’ solve a transport equation with anisotropic scattering which occurs when the cross section is tem-
perature sensitive, then the goal of this section is to develop a low cost method to solve the transport equation
when this situation occurs. Furthermore, the matrix operations on the sixth line of the algorithm are costly. If
these matrix operations can be eliminated from the new method, then the efficiency of the new method is fur-
ther improved. We shall see that the computational costs of the fourth and sixth lines can both be lowered by
reducing the number of equations and the number of unknowns in these two lines by the application of the
SMW formula [15].

The system of equations on the fourth line can be transformed into a smaller system in four steps: left mul-
tiply the fourth line by wdHk;�1

g;d , sum the product with respect to d, left multiply the resulting sum by rk
g, and

sum that product with respect to g. The result is
eUk �
Xnĝ

g¼1

rk
g

Xnd̂

d¼1

wdHk;�1
g;d ak

g;d

 ! !eUk ¼
Xnĝ

g¼1

rk
g

Xnd̂

d¼1

wdH k;�1
g;d ak

g;d

 ! !
FðT kÞ; ð5:3Þ
where
eUk �
Xnĝ

g¼1

Xnd̂

d¼1

rk
gwddwk

g;d 2 Rnx̂�1 ð5:4Þ
is denoted as F, the ‘integrated intensity’, in the GTA method [19]. When the nx̂ � nx̂ ‘lambda’ matrix,
Kk �
Xnĝ

g¼1

rk
g

Xnd̂

d¼1

wdH k;�1
g;d ak

g;d

 !
2 Rnx̂�nx̂ ; ð5:5Þ
is substituted into (5.3), we have
eUk � Kk eUk ¼ KkFðT kÞ; ð5:6Þ

which is the reduced system of the SMW decomposition6 of the equation on line 4 of Algorithm 3.
e SMW decomposition of Hk
g;ddw

k
g;d � ak

g;d

Pnĝ

g0¼1

Pnd̂

d 0¼1
rk

g0wd 0dw
k
g0 ;d 0 ¼ ak

g;dFðT kÞ consists of the pair of equations: (5.6), and
k
g;d ¼ ak

g;d
eUk þ ak

g;dFðT kÞ. The second of the pair is obtained by the substitution of (5.4) into the second term on the lhs of the first
n of the previous sentence. Since, as we shall see, the sixth line of Algorithm 3 needs eUk but not dwk

g;d , then the second equation of
W pair can be omitted from our modification of Algorithm 3.

.6) is also called the Lambda equation of the Lambda Method for solving Line Radiation Transport Equations [17].
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Let us turn off ‘line search’ in Algorithm 3 and direct our thoughts to the equation on the sixth line of the
algorithm. On the rhs of the equation, we set k = 1 and substitute (5.4) into the ‘numerator’ to yield
T kþ1 ¼ T k þ
F ðT kÞ þ eUk

Ck
pþ _Ck

p ½T k�T n�
Dtn

þ
Pnĝ

g¼1

Pnd̂
d¼1wd rk

g½ _Bk
g� þ _rk

g½Bk
g� � _rk

g½w
k
g;d �

� � : ð5:7Þ
At this point, the fourth and the sixth lines of Algorithm 3 are transformed into (5.6) and (5.7), respectively.
The matrix multiplication involving Kk on the rhs of (5.6) and the vector addition involving FðT kÞ in the

‘numerator’ on the rhs of (5.7) can be eliminated from these equations by the substitution of the ‘solution’ of
(5.6) into the ‘numerator’ of (5.7) to yield
F ðT kÞ þ eUk ¼ F ðT kÞ þ ðI � KkÞ�1KkFðT kÞ ¼ ðI � KkÞ�1
F ðT kÞ: ð5:8Þ
Since, on the rhs of (5.8), we need the action of (I � Kk)�1 on FðT kÞ, then it can be obtained by solving
ðI � KkÞUk � FðT kÞ: ð5:9Þ
The above equation enable us to write (5.8) as FðT kÞ þ eUk ¼ Uk, which when substituted into (5.7) yields
T kþ1 ¼ T k þ
Uk

Ck
pþ _Ck

p ½T k�T n�
Dtn

þ
Pnĝ

g¼1

Pnd̂
d¼1wdðrk

g½ _Bk
g� þ _rk

g½Bk
g� � _rk

g½w
k
g;d �Þ

: ð5:10Þ
Thus, the computation cost of the fourth and the sixth lines can be further lowered by transforming the pair
(5.6) and (5.7) into the equivalent pair (5.9) and (5.10). The substitution of this pair of equations into Algo-
rithm 3 leads to the algorithm derived by the Sherman–Morrison–Woodbury formula.

Algorithm 4 (A Sherman–Morrison–Woodbury algorithm for solving (2.4)).

T0 = Tn

for k = 0,1, . . .
1. Hk

g;dw
k
g;d ¼ rk

gBk
g þ f n

g;d

2. FðT kÞ ¼ q� Ck
p

T k�T n

Dtn
þ
Pnĝ

g¼1

Pnd̂
d¼1r

k
gwdðwk

g;d � Bk
gÞ

3. if kF ðT kÞk > tol
4. ðI � KkÞUk ¼ FðT kÞ
5. k = 1
6. T k ¼ T k þ k Uk

Ck
pþ _Ck

p ½T k�T n �
Dtn

þ
Pnĝ

g¼1

Pn
d̂

d¼1
wd ðrk

g ½ _Bk
g �þ _rk

g ½Bk
g �� _rk

g ½wk
g;d �Þ

7. if kF ðT kÞk > kFðT kÞk
8. k = k/2, go to 6
9. else

10. Tk+1 = Tk

11. end if
12. else
13. break, (solution found)
14. end if

end for.

Algorithm 4 is less expensive than Algorithm 3, since lines 4 and 6 of Algorithm 4 are less expensive than
the corresponding lines of Algorithm 3. Let us compare lines 6 of these algorithms first. There are fewer oper-
ations in line 6 of Algorithm 4 than in line 6 of Algorithm 3. A big saving occurs in line 4; line 4 of Algorithm 4
requires the inversion of the nx̂ � nx̂ dense matrix (I � Kk), but line 4 of Algorithm 3 requires the inversion of a
ðnĝ � nd̂ � nx̂Þ � ðnĝ � nd̂ � nx̂Þ transport matrix where the group-to-group coupling and the direction-to-direction
coupling are described by an anisotropic ‘fission matrix’.
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Remark 7. If, in Algorithm 4, the matrix (I � Kk) on the lhs of the fourth line and the matrix in ‘denominator’
of the fifth line are both nonsingular, then Algorithm 4 converges to the solution of (2.4) when FðT kÞ ¼ 0.
Proof. When these two conditions are met, then Algorithm 4 can proceed. When F ðT kÞ ¼ 0, we have the solu-
tion to (2.4) for the reasons given in Remark 1. h
5.3. The solution of the Lambda equation

Algorithm 4 rests on the solvability of the lambda7 equation on its fourth line; this equation is and shall be
referred to as (5.9). Under a mild assumption, the matrix I � K on the lhs of (5.9) is nonsingular.

Theorem 5.1. (The matrix (I � K*) is nonsingular.) Assume that the Jacobian of F at T* is nonsingular, where T*

is the solution of F ðT �Þ ¼ 0, then (I � K*) at T* is nonsingular.
Proof. This assumption on the Jacobian of a nonlinear system of equations is the condition required by New-
ton’s method to solve the nonlinear system. Since the null space of J is empty, then the action of J, given by
(8.3), on an arbitrary vector x is nonzero, i.e.
7 Diff
applica
line tra
C�p þ _C�p½T � � T n�
Dtn

þ
Xnĝ

g¼1

Xnd̂

d¼1

wdðI � r�gH �;�1
g;d Þðr�g½ _B�g� þ _r�g½B�g� � _r�g½w

�
g;d �Þ

 !
x 6¼ 0; ð5:11Þ
where the superscript* on a symbol means the symbol is evaluated at T*.
Assuming that the nonzero vector y is a null vector of (I � K*), then
K�y ¼ y: ð5:12Þ

Let us rescale y by the nonsingular matrix of (4.23)
y ¼
C�p þ _C�p½T � � T n�

Dtn
þ
Xnĝ

g¼1

Xnd̂

d¼1

wdðr�g½ _B�g� þ _r�g½B�g� � _r�g½w
�
g;d �Þ

 !
z: ð5:13Þ
The substitution (5.5) and (5.13) into (5.12) yields
C�p þ _C�p½T � � T n�
Dtn

þ
Xnĝ

g¼1

Xnd̂

d¼1

wdðI � r�gH �;�1
g;d Þðr�g½ _B�g� þ _r�g½B�g� � _r�g½w

�
g;d �Þ

 !
z ¼ 0;
which contradicts (5.11). h

Since Kk is nonsymmetric (and iKki may be larger than 1 when the coefficients are temperature dependent),
then a Krylov method is needed to solve (5.9). In order to invert the matrix (I � Kk) on the lhs of (5.9), a Kry-
lov method requires a function that returns the action of (I � Kk) on an arbitrary vector x. This function can
be derived from (5.5) by multiplying both sides of the equation by x to yield
Kkx ¼
Xnĝ

g¼1

Xnd̂

d¼1

wdr
k
gHk;�1

g;d ðak
g;dxÞ;
where the term Hk;�1
g;d ak

g;dx is determined by solving the equation H k
g;dw

k
g;d ¼ ak

g;dx.

5.4. Preconditioning the Lambda equation

The purpose of this section is to derive a preconditioner for I � Kk by approximating Kk. Let us examine
(5.5) in order to gain an understanding of Kk. If Kk were a diagonal matrix, then it would be easy to derive a
erent kinds of lambda equations, derived by the application of SMW formula to transport equations, can be found in other
tions of transport theory, e.g., the lower order equation of mono-energetic neutron transport, and the lambda equation of radiation
nsport.
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preconditioner for I � Kk. Since, according to (5.5), Kk is a linear combination of triple products rk
gH k;�1

g;d ak
g;d ,

where rk
g and ak

g;d are diagonal matrices and Hk;�1
g;d is a dense matrix, then a preconditioner for I � Kk can be

derived by approximating H k;�1
g;d by a diagonal matrix. If we define H k;diag

g;d to be the diagonal of H k
g;d , then our

approximation for H k;�1
g;d is
Table
The no

Algori

PFM

SiNL

INL

SMW
H k;�1
g;d � ðH

k;diag
g;d Þ

�1
: ð5:14Þ
Substituting (5.14) into (5.5), we have a diagonal approximation for the lambda operator
Kk
diag �

Xnĝ

g¼1

Xnd̂

d¼1

wdr
k
gðH

k;diag
g;d Þ

�1ak
g;d : ð5:15Þ
Let us examine Kk
diag and Kk for two limiting cases: vanishingly cross sections and infinite cross sections. As

rk
g ! 0 under the constraint Dtn > 0, both Kk

diag and Kk go to 0. On the other hand, since kDk=krk
gk ! 0 as

krk
gk ! 1, then H k

g;d ! Hk;diag
g;d as krk

gk ! 1 . Hence Kk
diag and Kk agree in these two limits. The substitution

of (5.15) into (I � Kk) followed by inversion yields our preconditioner for (5.9)
P � ðI � Kk
diagÞ

�1
: ð5:16Þ
6. Numerical results

The algorithms presented in this paper are tested on three problems for efficiency and accuracy. The algo-
rithms are the PFM of Algorithm 1, the semi-implicit nonlinear method (SiNL) of Algorithm 2, the isotropic
nonlinear (INL) approximation of Algorithm 3 described in Section 5.1, and the SMW method of Algorithm 4.
The nonlinear equations and the linear equations, which are solved by the algorithms, are summarized in
Table 1. The table shows that the SiNL method solves F lagðT Þ ¼ 0 but the other three solve F ðT Þ ¼ 0. Thus
the SiNL solution is different from the solutions of the others. The magnitudes of the differences are illustrated
in the plotted results.

The methods are preconditioned as follows. For the PFM method, we precondition J by the diagonal pre-
conditioner of (5.15) rather than by the diffusion preconditioner derived in [11] in order to demonstrate the
viability of the PFM method with simple preconditioning. The linear equation of the SiNL method is precon-
ditioned by the GTA accelerator [20] which is preconditioned by the DSA accelerator [2,4,8,9,19,22]. In the
linear equation of the INL algorithm, there are two types of ‘a’ coefficients; ~ak

g of (5.2) is isotropic, but ak
g;d

of (4.25) is anisotropic. Since the operator on the lhs of the linear equation of the INL method is isotropic,
this equation is preconditioned by GTA which is preconditioned by DSA. The linear equation of the SMW
algorithm is solved by the GMRES [26] method preconditioned by the diagonal preconditioner of (5.15).

The algorithms derived in this paper are incomplete, because we assumed that the linear equations of the
fourth lines of the algorithms, which determine the new iterate in Newton’s method, are solved exactly. How-
ever, in practice, they are solved inexactly by iterative methods. Since our algorithms rely on line search to find
the solution, and line searching requires an accurate direction in which to search, our algorithms may fail
because this type of error is not accounted for by our line search; a failure of this type occurs in the third test
problem of this paper. On the other hand, this type of error is less likely to cause a failure when it is properly
accounted for in an Inexact Newton–Krylov solver such as Kinsol [12].

Although the PFM and SWM algorithms fit nicely into the framework of a Newton solver (because the
linear equations and the nonlinear equations are in spaces of equal dimensions), the SiNL and INL algorithms
1
nlinear equations and the linear equations solved by the Algorithms

thm Nonlinear equation Linear equation

FðT Þ ¼ 0 JdT ¼ �FðT kÞ
F lagðT Þ ¼ 0 Hg;ddw

k
g;d � âk

g

Pnĝ ;nd̂

g0¼1;d 0¼1
rg0wd 0dw

k
g0 ;d 0 ¼ âk

gF lagðT kÞ
FðT Þ ¼ 0 Hk

g;ddw
k
g;d � ~ak

g

Pnĝ ;nd̂

g0¼1;d 0¼1
rk

g0wd 0dw
k
g0 ;d 0 ¼ ak

g;dFðT kÞ
FðT Þ ¼ 0 ðI � KkÞU ¼ FðT kÞ
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do not (because the linear equations of the SiNL and INL methods are in a higher dimensional space than the
space of the nonlinear equations). Since the SiNL and the INL equations do not fit neatly into the framework
of a Newton solver, we solved them with a home grown code which is written in a more general framework
than the framework of a Newton solver. In order to compare the performances of the four algorithms within a
common framework, the equations of the PFM and the SMW methods are also solved with our code. Solving
them with our code does, however, a gross injustice to both, because our code is not built to handle a large
search direction error. The results of the SMW obtained by Kinsol are given in Table 2 as a point of reference
for the efficiency that could be achieved by the SMW method when it is linked to a well-tuned nonlinear solver
such as Kinsol [12]. The PFM results obtained by Kinsol are not reported, since they are nearly identical to the
SMW results obtained by Kinsol. In our code, the spatial derivative is discretized by the Simple Corner Bal-
ance method [1].

The three test problems, presented in the order of increasing temperature sensitivity, subject the approxi-
mations of the SiNL and INL methods to a sequence of increasingly stressful situations. Both _Ck

p and _rk
g

are set to zero in the SiNL method, but only _rk
g is set to zero in the INL method. Since the coefficients of

the first test problem, which is from Larsen’s work on Grey Transport Acceleration [20], are temperature
insensitive, then the SiNL and INL methods are able to solve this problem accurately and efficiently. We shall
say that the approximations of the SiNL and INL methods are ‘unstressed’ by Larsen’s problem. The second
test problem is from Su’s and Olson’s work [27] on an analytical solution of a radiation transport problem
with a constant cross section and a temperature sensitive heat capacity which is proportional to T3. The SiNL
method solves this problem less accurately and less efficiently than the INL method. We shall say that the
SiNL approximation is ‘stressed’ by Su’s and Olson’s problem, but the INL approximation is unstressed by
it. The third test problem is an adaptation of the problem of Fleck and Cummings (FC) [14] in which the cross
section of FC is modified to yield a temperature sensitive cross section. The solution to this problem is
obtained with little accuracy and with difficulty by the INL method, but is obtained with even less accuracy
Table 2
Solver statistics for Problem 1

Dt Method Run time Nonlinear Back track Linear

30 SiL 68 – – 30
PFM 1870 621 346 621
SiNL 197 93 0 193
INL 221 95 0 202
SMW 512 73 0 73
Kin-SMW 164 46 30 58

100 SiL 33 – – 9
PFM 738 232 174 230
SiNL 91 55 6 73
INL 100 53 6 76
SMW 312 37 6 204
Kin-SMW 116 38 9 74

300 SiL 16 – – 3
PFM 313 96 84 96
SiNL 64 39 23 41
INL 70 36 22 37
SMW 338 31 16 239
Kin-SMW 94 22 3 79

900 SiL 1 – – 1
PFM 154 45 49 45
SiNL 72 35 53 35
INL 74 29 45 29
SMW 267 21 21 187
Kin-SMW 107 16 1 117
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and with even more difficulty by the SiNL method. We shall say that both methods are stressed by Fleck’s and
Cummings’s problem.

6.1. Larsen’s test problem

This test problem is from Larsen’s paper on Grey Transport Acceleration [20]. We introduce this problem
by beginning with a description of the problem’s phase space grid. The frequency variable m is logarithmically
spaced with 50 groups between hmmin = 10�5 keV and hmmax = 10 keV. Group g is defined by mg�1

2
6 m 6 mgþ1

2
,

where
m1
2
¼ mmin; mgþ1

2
¼ mmax

mmin

� � 1
50

mg�1
2
:

The angular quadrature is the 20 point Gauss–Legendre approximation; this set has five times more angles
than the 4 point Gauss–Legendre set in Larsen’s paper. The time steps are constant 30 ps (1 ps = 10�12 s)
increments. The spatial domain is divided into three regions which is described by the spatial mesh,
Dx ¼
:10 cm; 0 < x < 1;

:02 cm; 1 < x < 2;

:20 cm; 2 < x < 4:

8><>:

We continue the introduction of Larsen’s test problem with a description of the problem’s physical parame-
ters. The cross section models photo-ionization absorption which is corrected for stimulated emission
rðm; T ; xÞ ¼ cðxÞ 1� e�hm=kT

ðhmÞ3
; ð6:1Þ
where
cðxÞ ¼
1 keV3=cm; 0 < x < 1;

1000 keV3=cm; 1 < x < 2;

1 keV3=cm; 2 < x < 4:

8><>: ð6:2Þ
We define rg(T) to be the group average of the above formula at the zone centers;
rgðT Þ �
1

mgþ1
2
� mg�1

2

Z m
gþ1

2

m
g�1

2

rðm; T ; xiÞdm:
The heat capacity Cp is the constant 5.109 Æ 1014 erg keV�1 cm�3.
We complete the introduction of Larsen’s test problem with a description of the problem’s energy sources.

The initial temperature is T(x, 0) = 10�3 keV, which is in equilibrium with the initial intensity
wg,d(x, 0) = Bg(T(x, 0)). No photons enters from the left boundary, but a steady, direction independent,
1 keV Planckian distribution of photons, wg,d(4 cm, t) = Bg(1 keV), enters from the right boundary. The exter-
nal heat source, q, and the external photon source, sg,d, are both zero.

The coefficients of this problem is insensitive to temperature variations; the following lemma facilitates the
proof of this statement.

Lemma 6.1. The inequality xe�x < (1 � e�x) holds for x > 0.

Proof. Since ex ¼ 1þ xþ 1
2
x2 þ � � �, then ex > 1 + x, for x > 0. The substitution of this inequality into

exe�x = 1, yields (1 + x)e�x < 1, which upon rearrangement gives xe�x < (1 � e�x). h

By this lemma, r(m, T, x) of (5.1) is insensitive, because
fðrðm; T ; xÞÞ � T
rðm; T ; xÞ

orðm; T ; xÞ
oT

���� ���� ¼ hm
kT

e�hm=kT

1� e�hm=kT
< 1; for T P 0; m > 0:
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Furthermore, the heat capacity is independent of temperature. Since the coefficients of this problem is insen-
sitive to temperature, two results occur. First, the SiNL solution is expected to be accurate since F lagðT Þ is an
accurate approximation of FðT Þ. Second, the SiNL and the INL estimates for Tk are not only accurate but
also can be solved efficiently by using the GTA method with DSA preconditioning. Therefore the SiNL
and INL solve this problem accurately and efficiently. On the other hand, the PFM and SMW algorithms,
which are built with simple preconditioners, require many GMRES iterations to determine Tk.

Turning to mathematics, the theorem of [6] sets an upper bound and a lower bound for the temperature of
this problem. The upper bound is the largest temperature amongst the temperatures by which the initial con-
ditions and the boundary conditions of this problem are specified. These temperatures are the initial material
temperature T(x, 0) = 10�3 keV, the temperature of the Planckian distribution of the initial intensity
wg,d(x, 0) = Bg(T(x, 0)), the temperature of the Planckian distribution of photons on the right inflow boundary
wg,d(4, t) = Bg(1 keV), and the temperature of keV that characterizes the empty Planckian on the left inflow
boundary. The lower bound of the theorem is the smallest of these temperatures. The temperature of this
problem is therefore
0 keV 6 T ðx; tÞ 6 1 keV: ð6:3Þ
It was found in [11] that the SiL method yields solutions which lie outside of these limits when Dt P 300 ps,
because the SiL method accepts a trial solution without testing the nonlinear residual of the trial solution.
However, as we shall see, the SiNL and INL algorithms, built on top of a modification of the SiL equations,
yield solutions which are within these limits.

Since the exact solution of this problem is not known analytically, we define the ‘exact’ solution to be the
PFM solution, which is computed by Kinsol on the fine phase space grid which has 2 times more spatial zones
and 30 times smaller time steps than the phase space grid described in the beginning of this section. The results
at t = 900 ps for 4 different time steps are plotted in Fig. 1 and are tabulated in Table 2. For the two largest
time steps, the SiL solution, which motivated this investigation, is outside of the limits of (6.3). On the other
hand, the solutions of the nonlinear methods are within these limits. Furthermore, the solutions of the non-
linear methods are in close agreement with one other; a solution of F ðT Þ ¼ 0 is in the proximity of the solution
of F lagðT Þ ¼ 0. The reason for the agreement is because the coefficients of this problem are insensitive to tem-
perature variations; therefore F lagðT Þ approximates F ðT Þ well. Moreover, when the time step is increased, the
solutions by the nonlinear methods depart from the ‘exact’ solution not randomly but in lock step, because the
error is not due to not solving FðT Þ ¼ 0 but due to large Dt.

Table 2 shows the solver statistics for this problem. The statistics in last 4 columns of the table are: column
3 is the run time in seconds, column 4 is the total number of nonlinear iterations, column 5 is the total number
of times that the back tracking parameter k was reduced, column 6 is the total number of iterations which was
needed to solve the linear equation. For each time step, we list 6 algorithms. The sixth, Kin-SMW, is the SMW
method solved by Kinsol; it shows the efficiency of SMW method which could be attained by an optimized
nonlinear solver. There are two reasons why SiNL and INL methods are faster than the PFM and SMW meth-
ods. The first is because the SiNL and INL methods are preconditioned by the GTA and DSA accelerators but
the PFM and SMW are preconditioned by the crude preconditioner of (5.16). The second is because our home
grown code ‘over-solves’ the linear equations to an accuracy which is not required by the nonlinear solver. The
over-solving is revealed in the Kin-SMW and SMW statistics. The Kin-SMW statistics, which is the number of
iterations needed by Kinsol, is smaller than the SMW statistics, which is the number of iterations needed by
our code. Kinsol achieves efficiency by tuning its linear solver to its nonlinear solver.

We shall conclude the discussion of this problem by comparing the runtime/accuracy ratio of the SiL
method to the runtime/accuracy ratio of the INL method which is our fastest nonlinear method for solving
FðT Þ ¼ 0. The runtime/accuracy ratio of a method is difficult to determine, because we do not have the ana-
lytical solution to measure the accuracy of a numerical solution. However, the runtime/accuracy ratio of a
method is, in some sense, related to the time to solution at the largest time step which can be taken by the
method to yield a physical solution. Fig. 1 shows that the time step, which separates the physical solutions from
the unphysical solutions, is between Dt = 100 ps and Dt = 300 ps for the SiL method; the solutions computed
with a smaller time step are physical, but the solutions computed with a larger time step are unphysical. The run
times of the SiL method for the time steps of 100 ps and 300 ps are 33 s and 16 s, respectively. However, the
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Fig. 1. Test runs for Problem 1 with 4 different time steps; Dt = 30, 100, 300, 900 ps. The SiL solutions, computed with Dt = 300 ps, and
600 ps, overshoot 1 keV and undershoot 0 keV.
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INL method is able to compute a physical solution at the largest possible time step 900 ps for the time point
t = 900 ps. In fact, the INL method is able to compute a physical solution at a much larger time step, but that
solution would be beyond the time point 900 ps. The run time of the INL method for the time step of 900 ps is
74 s, which is an upper bound for the run time of the INL method for the largest time step by which it yields a
physical solution. Therefore, our best guess for runtime/accuracy ratio of the INL method is <74, and our best
guess for the runtime/accuracy ratio of the SiL method <33. These results show that the SiL method has the
advantage of speed, but the INL method has the advantage of reliability (to deliver a physical solution).

6.2. The problem of Su and Olson

The problem of Su and Olson [27] puts great stress on the assumption that _Ck
p is negligible, but puts no

stress on the assumption that _rk
g is small. The reason is: in the nonlinear system solved analytically by Su

and Olson, Cp(T) is temperature sensitive but rg(T) is temperature independent. The system consists of the
frequency integrated transport equation,
1

c
o

ot
þ l

o

ox
þ r

� �
Iðl; x; tÞ ¼ 1

2
racT 4 þ 1

2
acH x� 1

2

� �
H

1

2
� x

� �
H

10

c
� t

� �
;

and the material equation,
4aT 3 oT
ot
¼
Z 1

�1

r Iðl; x; tÞ � 1

2
acT 4

� �
dl;
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where H is the Heaviside function, a is the radiation constant, c is the speed of light, and
Iðl; x; tÞ �
Z 1

0

wðm; l; x; tÞdm:
The initial conditions are T(x, 0) = 0 and I(l, x, 0) = 0, and the boundary conditions are limx!±1I

(l, x, t) = 0.
Since the sensitivity coefficient of the heat capacity Cp(T) ” 4 aT3 is
fðCpðT ÞÞ �
T

CpðT Þ
oCpðT Þ

oT

���� ���� ¼ 3;
then the SiNL assumption of setting _Ck
p to 0 is tested by this problem. However, the cross section of this prob-

lem is constant; thus INL assumption of setting _rk
g to zero (see (5.2)) is valid.

We simulate this problem as follows. The angular integral is approximated by the 20 point Gauss–Legendre
quadrature. Since the problem is reflection symmetric, we solve the problem in the half space with the spatial
grid,
Dx ¼

:020; :0 < x < :1;

:100; :1 < x < :5;

:125; :5 < x < 1;

1:00; 1: < x < 35:

8>>><>>>:

In the half space, no photons enters from the right boundary, and photons are reflected at the left boundary.
The spatial derivative is approximated by the Simple Corner Balance method [1]. Since the algorithms cannot
handle the singular perturbation caused by a vanishing heat capacity which occurs when the temperature is 0,
we modify the initial temperature to be .001 everywhere.

In Fig. 2, there are 5 pairs of sub-figures which are ordered from left to right and from top to bottom. Each
pair of sub-figures represent the results by a method: sub-figures 1 and 2 are the pair of results for the SiL
method, sub-figures 3 and 4 are the pair of results for the PFM method, sub-figures 5 and 6 are the pair of
results for SiNL method, sub-figures 7 and 8 are the pair of results for the INL method, and sub-figures 9
and 10 are the pair of results for the SMW method. The first sub-figure of a pair contains the plots of the spa-
tial profiles of the fourth power of the material temperature at three time points, and the second sub-figure of
the pair contains the plots of the spatial profiles of the photon energy at the same time points. The profiles
were calculated with a constant time step of .1/20, the largest time step with which we found reasonable agree-
ment with the analytical solution. However, the SiL method needs a time step of .1/2000 to achieve a solution
of comparable accuracy. Furthermore, DSA was turned off in the SiL calculation since the effective absorption
by the small time step rendered the SiL equation nondiffusive. The results of the PFM, the INL, and the SMW
algorithms agree with the analytical solution of Su and Olson, but the results of the SiNL algorithm, as
expected, do not. Furthermore, Table 3 shows that the solver statistics of the PFM, INL, and SMW algo-
rithms are similar.

We shall conclude our presentation of the problem of Su and Olson by comparing the runtime/accuracy
ratio of the SiL method to the runtime/accuracy ratio of the INL method. Since the SiL and INL solutions
of Fig. 2 are of comparable accuracy for this problem, we can read off these ratios from the runtime column
of Table 3. They are 4508 s for the SiL method and 50 s for the INL method. These run times represent
runtime/accuracy ratios of the methods more accurately than the run times of Larsen’s problem, because
the accuracy of a numerical solution can be measured by the analytical solution of Su and Olson. For this
problem, we can say with a degree of certainty that the INL method is more than 10 times faster than the
SiL method (see Table 4).

6.3. The problem of Fleck and Cummings

Fleck and Cummings (FC) [14] examined two types of cross sections; the first type depends weakly on the
temperature, but the second type depends strongly on the temperature. The first type, 27 (1 � e�hm/kT)(hm)�3, is



10
–2

10
–1

10
0

10
1

10
–3

10
–2

10
–1

10
0

x

T
m

at
4

c t = .1

c t = 1

c t = 10

SiL
Exact

0 1 2 3 4
0

0.5

1

1.5

2

x

T ra
d

4

c t  = .1

c t  = 1

c t  = 10

SiL
Exact

10
–2

10
–1

10
0

10
1

10
–3

10
–2

10
–1

10
0

x

T
m

at
4

c t = .1

c t = 1

c t = 10

PFM
Exact

0 1 2 3 4
0

0.5

1

1.5

2

x

T ra
d

4

c t  = .1

c t  = 1

c t  = 10

PFM
Exact

10
–2

10
–1

10
0

10
1

10
–3

10
–2

10
–1

10
0

x

T
m

at
4

c t = .1

c t = 1

c t = 10

SiNL
Exact

0 1 2 3 4
0

0.5

1

1.5

2

x

T ra
d

4

c t  = .1

c t  = 1

c t  = 10

SiNL
Exact

10
–2

10
–1

10
0

10
1

10
–3

10
–2

10
–1

10
0

x

T
m

at
4

c t = .1

c t = 1

c t = 10

INL
Exact

0 1 2 3 4
0

0.5

1

1.5

2

x

T ra
d

4

c t  = .1

c t  = 1

c t  = 10

INL
Exact

10
–2

10
–1

10
0

10
1

10
–3

10
–2

10
–1

10
0

x

T
m

at
4

c t = .1

c t = 1

c t = 10

SMW
Exact

0 1 2 3 4
0

0.5

1

1.5

2

x

T ra
d

4

c t  = .1

c t  = 1

c t  = 10

SMW
Exact

Fig. 2. The fourth power of the material temperature is on the left, and radiation energy density is on the right.

Table 3
Solver statistics for the calculations graphed in Fig. 2

Run time Nonlinear Back track Linear

SiL 4508 – – 40,000
PFM 41 416 40 417
SiNL 46 405 30 810
INL 50 420 43 423
SMW 42 423 35 423
Kin-SMW 24 440 400 440
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Table 4
Solver statistics for Problem 3

Dt Method Run time Nonlinear Back track Linear

10 SiL 22 – – 30
PFM 267 87 11 87
SiNL 96 43 0 43
INL 180 103 0 103
SMW 386 35 0 224

30 SiL 8 – – 10
PFM 148 48 21 48
SiNL 32 14 1 14
INL 134 89 4 89
SMW 206 19 0 99

60 SiL 4 – – 5
PFM 89 29 16 29
SiNL 21 12 0 12
INL 78 46 16 46
SMW 151 14 1 61

300 Kin-SMW 147 26 1 169
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essentially the insensitive cross section (6.1) used by Larsen to test the SiL method [20]. The cross section of the
second type
rðm; T ; xÞ ¼ 27
1� e�hm=kT

ðhmÞ3T
3
2

: ð6:4Þ
is the cross section of the first type divided by T
3
2. Even though (6.4) is unbounded for T = 0, its sensitivity as

measured by (5.1) is not larger than 1 for all T. Thus, the question of whether the SiNL and INL methods can
take large time steps when solving a problem with a temperature sensitive cross section is not answered by
(6.4). In order to turn (6.4) into a temperature sensitive cross section, we replace the stimulated emission factor
(1 � e�hm/kT) with the number 1. We also generalize the cross section slightly by replacing the number 27 with
the c(x) function of (6.2) to model a spatial variation. These two modifications yield the cross section
rðm; T ; xÞ ¼ cðxÞ
ðhmÞ3T

3
2

; ð6:5Þ
with the sensitivity coefficient fðrðm; T ; xÞÞ ¼ 3
2
. Since _rk

g is significant, this problem tests not only the lagging
assumption of the SiNL approximation but also the isotropicization assumption of the INL approximation.

However, the infinity of (6.5) at T = 0 interferes with our examination of these approximations. The inter-
ference consists of third factors. The first factor is that the transport equation with (6.5) as the cross section is
outside of the scope of the theorem derived by [6]. Without this kind of theorem, we can not verify that a
numerical solution is within the mathematical limits of the solution to the continuous transport equation.
The second factor is that the infinity is not stabilized by implicit time differencing. The third factor, which
is related to the second factor, is that the discretization error (proportional to drg/dT) in the neighborhood
of T = 0 is enormous. In order to compensate for the magnitude of this factor, Dt must be small. Therefore,
the time step which is needed to yield a physical solution is limited not by the method to solve a system of
algebraic equations, but by the discretization of the continuous equation which is a more fundamental aspect
of the computational problem. We shall find that the time steps needed by the method presented in this paper
to solve Fleck’s and Cummings’s problem are much smaller than the time steps needed by them to solve Lar-
sen’s problem.

The third test problem is a modification of the first problem; the cross section of (6.1) is replaced by the
cross section of (6.5). Except for this difference, the problems are constructed from common building blocks:
boundary conditions, initial conditions, and phase space mesh. Since this problem is more sensitive to temper-
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ature variations than the first problem, our home grown code solves this problem with more difficulty than the
first problem. Our code stalls on all 4 methods when Dt = 100 ps; the time step in which time discretization
error is discernible.

The results at t = 300 ps, calculated by the three different time steps {10, 30, 60} ps, are displayed in Fig. 3.
The ‘exact’ solution is obtained by the PFM method solved by Kinsol on a spatial grid with twice as many
zones and with the time step of 1 ps. The results show that the lagging assumption of the SiNL approximation
is inappropriate for this problem when the time step is 60 ps or larger. The results also show that the solutions
of the PFM, INL, and SMW methods agree with the ‘exact’ solution for these time steps. However, our imple-
mentations of the 4 algorithms fail to converge when the time step is increased to 100 ps. On the other hand,
Kinsol converges for a time step of 300 ps.

This failure by our code exposes the fragility of line searching when it is tied to an inexact Newton method.
Line searching requires an accurate direction in which to search, but the direction, which is determined by the
linear equation in Newton’s method, is given approximately by an iterative solver. There is no reason to expect
a line search to succeed when the linear equation, which is the transport equation of Algorithm 3, is approx-
imated by isotropicization, nor is there a reason to expect it to succeed if the solution to the linear equation is
returned inaccurately by an iterative solver.

The resolution of this difficulty is algorithm specific. Eisenstadt and Walker (EW) [13] show how line
searching can be tied to a Krylov solver in the Inexact Newton–Krylov method. However, neither the INL
method nor the SMW method are conventional Newton methods; the linear equation of the INL method
is in a higher dimensional space than nonlinear equation, the linear equation of SMW is not the Jacobian
of the nonlinear equation. Since the SMW method can be handled by Kinsol, we tried to incorporate the ideas
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Fig. 3. Test runs for Problems 3 with 4 different time steps; Dt = 10, 30, 60, 300 ps.
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of EW into our code. However, the difference in the statistics of the SMW method and statistics of the Kin-
SMW method suggests that the EW method is not implemented in our code in the way that it is intended. On
the other hand, we made no attempt to tie line searching to the GTA method, since the EW method which is
derived for an inexact Newton solver is not applicable to this situation.

We shall conclude our presentation of the FC problem by examining the run times of the SiL and INL
methods which are determined at the largest time steps which can be taken by them to yield physical solutions.
This time step is larger than 10 ps for the SiL method, and is larger than 60 ps for the INL method. The run
times are smaller than 22 s and smaller than 78 s for the SiL and INL methods, respectively. Hence, our best
guess for the runtime/accuracy ratio for the SiL method is smaller than 22 s, our best guess for the runtime/
accuracy ratio of the INL method is smaller than 78 s. Thus, the runtime/accuracy ratio of the INL method is
almost 4 times larger than the runtime/accuracy ratio of the SiL method. However, these run times represent
the runtime/accuracy of these methods less accurately than the run times of Larsen’s problems, because these
run times are interfered with by the infinity at T = 0.
7. Discussion

In this paper, we derive a modified SiL transport Eq. (4.24) to determine the next iterate in Newton’s
method to solve the radiation Eq. (3.3) derived by the PFM method. The pair of Eqs. (3.3) and (4.24) can
be solved by either the INL method or the SMW method. Since, in addition to these two methods, the solution
to (3.3) can be obtained by the PFM method, then one may ask: Which of the three, INL or SMW or PFM, is
the best method? However, in order to narrow down the scope of this question, we shall first show in Section
7.1 that the PFM and SMW methods are equivalent. Then, in Section 7.2, we shall answer the question with
the answer to the narrower question: Which of the pair, INL or SMW, is the better method? The SiL and
SiNL methods shall also be assessed in the context of this pair in Section 7.2.

7.1. The PFM method of Algorithm 1 is equivalent to the SMW method of Algorithm 4

Except for the equations on lines 4 and 6 of Algorithm 1 and the equations on lines 4 and 6 of Algorithm 4,
the equations on the other lines of the algorithms are identical. These seemingly unrelated pairs of equations
are, however, related by a simple change of variable which connects dT of Algorithm 1 to Uk of Algorithm 4.
The goal of this subsection is to uncover the relationship between these variables.

Let the diagonal matrix on the lhs of (4.23) be defined as
Ck �
Ck

p þ _Ck
p½T k � T n�
Dtn

þ
Xnĝ

g¼1

Xnd̂

d¼1

wdðrk
g½ _Bk

g� þ _rk
g½Bk

g� � _rk
g½w

k
g;d �Þ ð7:1Þ
to facilitate our investigation. Moreover, Ck is the ‘denominator’ on the rhs of line 5 of Algorithm 4, and is
also the ‘denominator’ on the rhs of (4.25).

Lemma 7.1. The negative of the product of (I � Kk) and Ck is the Jacobian oF=oT , that is
�ðI � KkÞCk ¼ oFðT Þ
oT

����
T k

;

where oF=oT is given by (8.3) of Appendix.

Proof. Writing ak
g;d of (4.25) in terms of Ck defined in (7.1), we have
ak
g;d �

rk
g½ _Bk

g� þ _rk
g½Bk

g� � _rk
g½w

k
g;d �

Ck
pþ _Ck

p ½T k�T n�
Dtn

þ
Pnĝ

g¼1

Pnd̂
d¼1wdðrk

g½ _Bk
g� þ _rk

g½Bk
g� � _rk

g½w
k
g;d �Þ
¼ ðrk

g½ _Bk
g� þ _rk

g½Bk
g� � _rk

g½w
k
g;d �ÞðCkÞ�1

: ð7:2Þ
The right multiplication of both sides of (5.5) by Ck followed by the substitution of (7.2) into the rhs of (5.5)
yields
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KkCk ¼
Xnĝ

g¼1

Xnd̂

d¼1

wdr
k
gH k;�1

g;d ðrk
g½ _Bk

g� þ _rk
g½Bk

g� � _rk
g½w

k
g;d �Þ: ð7:3Þ
The subtraction of (7.3) from (7.1) yields
ðI � KkÞCk ¼
Ck

p þ _Ck
p½T k � T n�
Dtn

þ
Xnĝ

g¼1

Xnd̂

d¼1

wdðI � rk
gHk;�1

g;d Þðrk
g½ _Bk

g� þ _rk
g½Bk

g � wk
g;d �Þ: ð7:4Þ
However, by (8.3), the rhs of (7.4) is equal to � oFðT Þ
oT jT k

, which proves the theorem. h
Lemma 7.2. The fourth lines of Algorithms 4 and 1 are equivalent.
Proof. The fourth line of Algorithm 4 is
ðI � KkÞUk ¼ FðT kÞ:
Inserting Ck(Ck)�1 between (I � Kk) and Uk, and substituting (7.4) into the result give
oF ðT Þ
oT

����
T k

ðCkÞ�1Uk ¼ �F ðT kÞ; ð7:5Þ
which is equivalent to the equation on the fourth line of Algorithm 1. h

Lemma 7.3. Algorithms 4 and 1 are related by the change of variables
Uk ¼ CkdT : ð7:6Þ
Proof. Since the fourth line of Algorithm 4 can be written as (7.5), then the substitution of (7.6) into this equa-
tion gives the fourth line of Algorithm 1. Furthermore, the substitution of (7.6) into the rhs of the sixth line of
(4) gives the sixth line of Algorithm 1. h
7.2. Conclusion

In this paper, a modified SiL transport Eq. (4.24) is derived to determine the next iterate in Newton’s
method to solve the PFM system of nonlinear equations (3.3). The INL and SMW methods, which unite
the SiL method to the PFM method, can take time steps which are considerably larger than the time step that
can be taken by the SiL method, and yield physical solutions when the SiL method yields an unphysical solu-
tion. Although the INL and SMW solve the modified SiL transport equation (4.24) by different approaches,
they yield numerically equivalent solutions because they both solve the PFM system of nonlinear equations
(3.3). The question on the superiority of the two will be decided by their preconditioners. The preconditioning
of the SMW method is at the stage of a work in progress. On the other hand, the INL method is amenable to
GTA and DSA preconditioning. Therefore, at the writing of this paper, the INL method is the better of the
two, because its preconditioners, GTA and DSA, are superior to the preconditioners of the SMW method
(and the closely related PFM method).

The reason why the SiL method yields an unphysical solution can be understood by studying the effects
caused by the removal of terms from (3.2) and (4.24) to retrieve the SiL transport equation. Lagging the heat
capacities and the cross sections of these equations takes us halfway to the SiL method; it removes terms from
these equations to yield the SiNL method which is a slight modification of the SiL method. However, the
removal of terms from (3.2) by the lagging of its coefficients produces a discernible error in the SiNL solution
of the Su and Olson problem, and in the SiNL solution of the Fleck and Cummings problem. On the other
hand, if the heat capacity and the cross section are temperature independent, no error is introduced into
the SiNL solution, because the INL method simplifies to the SiNL method. Although the SiNL method is
a slight modification of the SiL method, Larsen’s test problem shows that the modification enables the SiNL
method to yield physical solutions in situations when the SiL method can not. Going from the SiNL method
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to the SiL method requires three additional steps: the temperature Tk in (4.7) and (4.8) is fixed to Tn, (4.8) is
substituted into (4.7), and (4.5) is used to simplify the result to yield (2.23) of [20] which is (4.3) with Tk set to
Tn. However, fixing Tk to Tn in F lagðT kÞ of (4.8) produces an error which is more deleterious than the lagging
approximation error by preventing the temperature from attaining its physical state T*. The result is an
unphysical solution.
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Appendix. The Jacobian of the photon free method

The goal of this appendix is to derive a formula for the Jacobian of FðT Þ by the differentiation of (3.2) with
respect to T. Differentiating (3.2) with respect to T yields
oFðT Þ
oT

����
T k

¼ �
Ck

p þ _Ck
p½T k � T n�
Dtn

�
Xnĝ

g¼1

Xnd̂

d¼1

wdð _rk
g½Bk

g � wk
g;d � þ rk

g½ _Bk
g � _wk

g;d �Þ: ð8:1Þ
On the other hand, the differentiation of the first equation of (2.4) by T yields
Hk
g;d

_wk
g;d þ _rk

gw
k
g;d ¼ rk

g
_Bk

g þ _rk
gBk

g: ð8:2Þ
If we solve (8.2) for _wk
g;d , substitute the solution into (8.1), and rearrange the result slightly, then we have
oFðT Þ
oT

����
T k

¼ �
Ck

p þ _Ck
p½T k � T n�
Dtn

�
Xnĝ
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� �
: ð8:3Þ
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